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DEFINITIONS
IDA publishes the following documents to report the results of its work.

Reports
Reports are the most authoritative and most caretully considered products IDA publishes.
They normally embody results of major projects which (a) have a direct bearing on
decisions affecting major programs, (b) address issues of significant concern to the
Executive Branch, the Congress and/or the public, or (c) address issues that have
significant economic implications. IDA Reports are reviewed by outside panels of experts
to ensure their high quality and relevance to the problems studied, and they are released 0
by the President of IDA.

Group Reports
Group Reports record the findings and results of IDA established working groups and
panels composed ot senior individuals addressing major Issues which otherwise would be
the subject of an IDA Report. IDA Group Reports are reviewed by the senior individuals
responsible for the project and others as selected by IDA to ensure their high quality and
relevance to the rroblems studied, and are released by the President of IDA.

Papers
Papers, also authoritative and carefully considered products of IDA, address studies that
are narrower in scope than those covered in Reports. IDA Papers are reviewed to ensure
that they moet the high standards expected of refereed papers in professional journals or
formal Agency reports. 0

Documents
IDA Documents are used for the convenience of the sponsors or the analysts (a) to record
substantive work done in quick reaction studies, (b) to record the proceedings of
conferences and meetings, (c) to make available preliminary and tentative results of
analyses, (d) to record data developed in the course of an investigation, or (e) to forward
information that is essentially unanalyzed and unevaluated. The review of IDA Documents
is suited to their content and intended use.

The work reported in this document was conducted under contract MDA 903 89 C 0003 for
the Department of Defense. The publication of this IDA document does not indicate
endorsement by the Department of Defense, nor should the contents be construed as
reflecting the official position of that Agency.
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PREFACE

This paper was prepared under Task T-D2-701, "Target Acquisition and Search

Studies," for Mr. Walter Hollis, Deputy Under Secretary of the Army [DUSA (OR)] and

Dr. John MacCallum, Jr., Staff Specialist for Electronic Sensors and Devices, ODDDRE

(R&AT/ET).

The authors are grateful for careful reviews by Dr. Marta Kowalczyk of IDA,

Dr. Stanley Rotman of Ben-Gurion University of the Negev, and Ms. Diana Frederick of

U.S. Army Materiel Systems Analysis Activity. In particular, it was Ms. Frederick who

saw the need to strengthen the connection between the abstract model and the behavior of
real smoke plumes.
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ABSTRACT

Models of human search and target acquisition are typically based on the

assumption of an independent glimpse probability leading to an exponential model of target

acquisition probability. This can be extended to the case of obscurants which intermittently
interrupt the line of sight to any point of the image field as might be the case with drifting

smokes. The model was previously addressed by Monte Carlo methods by Kowalczyk

and Rotman and here is given a complete analytic solution by comparison with physical
models of simple ferromagnets. The result is that the single exponential characteristic of
the unobscured search model is replaced with two exponentials whose decay times and
amplitudes are determined by the average duration times for clear and obscured lines of

sight.

The modified search model still assumes that the target acquisition task can be
decomposed into short glimpses. If a fixed moderate length duration of unobscured time is

needed for the completion of a task (such as preparing, firing, and guiding a weapon), a

different calculation must be made. Using the obscurant model developed for the search

task, the timelines for such situations are given analytically.
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EXECUTIVE SUMMARY

The assessment of the effects of smoke on the battlefield presents a uniquely

difficult problem for war garners. In particular, simulations such as JANUS or

CASTFOREM play smoke at a level of fidelity such that the players affected by a given

smoke round would be identified specifically, but the details of the exact nature of the effect

would be treated statistically. In other words, while these simulations are high fidelity,

they do not simulate a "virtual reality" in which the details of the smoke plume, such as

fluctuations and holes, are represented. The incorporation of such a high level of detail is

inconsistent with the design philosophy of these simulation tools. The level of hardware

and software reconfiguration that would be required to support such detail would be

disruptive to say the least.

Yet the nature of the target acquisition task must be affected by these small scale

variations. The existence of fluctuations and holes in smoke plumes has long been known,

* but has only recently been explained quantitatively. How can these effects be both
accurately and economically incorporated into the war games? This is the question which

we answer in this paper.

The framework of our analysis is a model of target acquisition in smoke which was

* developed previously by Rotman. In his treatment, Rotman demonstrates the appropriate

averaging procedure for target acquisition in smoke. The analysis herein accomplishes
three things. First, we justify the model by establishing the connection between it and
some new results in the physics of smoke plumes. Second, we solve it by deriving simple

analytic solution to the model. Third, we extend it by showing how the model applies to
the computation of the probability of successfully completing a command guidance task.

The justification of the original model addresses two issues. In both cases we

show how to detemine the inputs required by the Rotman model from the readily measured

properties of smoke plumes. The first issue is the structure of the fluctuations in smoke

plumes. In discussing this issue we rely on very recent work done by the Army Battlefield

Environments Directorate, which applies the theory of atmospheric turbulence to smoke

plumes. The second issue is the main simplifying assumption of the model, namely that

for purposes of target acquisition, a given line of sight is either clear or obscured.

S-1



This observation draws on our everyday experience; smoke plumes seem to have fairly

well defined edges, and the fluctuations in concentration are evident to us as actual holes in

the plume. We show that this intuitive assessment is borne out by computations based

upon the Night Vision Static Model, which shows that under many conditions (which we

determine), the predicted target acquisition performance changes rapidly over a narrow

range of smoke concentration.

The second accomplishment, namely the solution of the Rotman model, is based on

the mathematical similarity of this model to a certain physical model of ferromagnetism.

Even given the physical paradigm, though, much original work still needed to be done

since the relevant questions for the present case do not map onto the ones asked in the

physical problem. So although the arithmetic does sometimes gets thick, this complexity is

not gratuitous because the work does not exist elsewhere. Fortunately, the intermediate

complexity can be put aside at the end since the final result is quite simple.

Finally, the extension of the model addresses the operational question that follows

naturally from the acquisition phase: Given that we have computed the probability of target

acquisition, can we use the same framework to compute the probability of maintaining an

uninterrupted line of sight to the target for the time that is needed to successfully engage it?

The answer is found to be yes, but some approximations need to be introduced if the •

solution is to be in closed form.

Further study is needed before insertion into the war game simulations should be

considered seriously. Apart from obvious concerns over validation, the model should be

exercised in a sensitivity analysis, to determine whether, and under what circumstances, the 0

new predictions affect the determination of relevant measures of effectiveness in the war

games. This issue continues to be addressed in the Army's Acquisition and Simulation

(ACQSIM) Program. Apart from its possible insertion into the war games, the model

developed by Rotman and improved here is available as a stand-alone tool for back-of-the- 0

envelope assessments.

S
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I. INTRODUCTION

Rotmani has merged a simple model of target acquisition with a simple model of

obscuration. He assumes a simple on-or-off model of smoke obscuration, and that the

probability of target not acquired is given by a decaying exponential in the unobscured time

on target. The interesting and nontrivial result is that in order to predict the mean time

required to acquire a target in the dynamic environment, it is insufficient to simply specify

the level of obscuration; it is also necessary to know something about the temporal

correlations of the obscured condition. In other words, the effect of smoke clouds that last,

say, 2 seconds with 2-second intervals between clouds is much different than those that last

20 seconds with 20-second inter, als, even though the average transmission values are the

same for the two cases.

Rotman's model results were obtained via Monte Carlo simulation of the obscurant

condition. We have found that it is possible to obtain an analytic solution of his model.

This has the obvious benefit that it now becomes possible to obtain certain results without

recourse to simulations. An additional benefit that accrues may in fact be more important:

The methodology which we introduce for handling the smoke model is sufficiently general

that we can pose-and answer--questions outside the realm of the simple search model;

for example, questions related to the effect of smoke on the subsequent engagement of the

target.

In this paper we develop an analytical formalism for the solution of Rotman's

model, and apply it to two problems of military interest: modeling the effect of obscurants

on rate of acquisition and rate of engagement. In Section II we introduce and justify the

assumptions behind Rotman's smoke model, and show how to extract the model

parameters for a given obscurant condition. In Section M we write down a formal solution

to the model, then show that the problem maps onto a well-known problem in the statistical

mechanics of spin systems. The formalism which we use to obtain solutions is somewhat

nonstandard, since the quantities that we need to compute are not the ones usually required

in the physical problem. We proceed to obtain the analytic solution to our version of the

SS.R. Rounan, "Modeling human search and target acquisition performance: IB. Simulating multiple
observers in dynamic scenarios," Opt. Eng. 28 (11) (1989).
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problem in Section IV. In Section V we pose and solve a different problem within the

context of Rotman's model; namely, computing the probability of maintaining an

uninterrupted, unobscured line of sight for some fixed time interval. This addresses

questions of the success of a subsequent engagement phase in the case, for example, of a

command guided munition. The results of Sections IV and V are summarized concisely in

Section VI.

1-2



0

II. JUSTIFICATION O1 .,AE MODEL

There are two distinct assumptions which underlie Rotman's approach and which

must be addressed before we consider the model in detail. The first is the two-level
assumption, the second that there is a characteristic time that governs the transitions
between the two levels. In this chapter we consider each of these issues in turn, with
special attention to the methods of calculation for the model parameters from operational
conditions.

A. THE TWO LEVELS OF OBSCURATION

The model for smoke which Rotman uses is a two-level model. He assumes that
there is a certain acquisition rate that is relevant for the "clear" condition, and another
slower one for the "smoked" condition. (In this paper we specialize to the case where the
slower rate is zero.) This is clearly a simplification of the true situation, where any given
level of obscuration is in principle possible. Can a model which makes such an apparently

extreme simplification have any relevance at all? We contend that it does. The reason for
this is that target acquisition parameters vary appreciably only over a narrow range of
obscuration conditions. Most of the time the target visibility is either essentially un-
degraded (compared to ambient conditions) or essentially zero. The intuitive justification
for this statement comes from the commonplace observation that smoke plumes and clouds
seem to have well defined edges, and even holes.

In order to quantitatively justify our claim, we need to discuss the way in which
4h smoke affects target visibility. We do so in the context of the Night Vision Laboratory's

Static Model 2 for target acquisition using thermal imaging sensors. According to this
model, thte rate at which the target is acquired is proportional to the probability of ultimately
detecting the target (P.o), with the constant of proportionality being 0.29 inverse seconds.

0 P.. is determined by the ratio of the number of resolvable cycles on target (N) to a cycle
criterion constant which is determined by the cognitive level of the acquisition (N50) by a

2 JA. Ratches, W.R. Lawson, LP. Obert, RJ. Bcrgemann, T.W. Cassidy, and J.M. Swenson, "Night
Vision Laboratory static performance model for thermal viewing systems," Research and Development
Tech. I'pt. ECOM-7043. U. S. Army Electronics Command, Ft. Monmouth, NJ (April 1975).
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target transfer probability function (TrPF). N in turn is computed, in units of the angular

target size s, from the apparent thermal contrast of the target (ATa) by applying the inverse

of the minimum resolvable temperature (MRT) function, which is the function that

quantitatively characterizes the thermal sensor. Finally ATa may be computed from the

actual thermal contrast (AT) given the attenuation properties of the obscurant. We assume

that Beer's Law is valid; that is, that the attenuation is exponential in the concentration

length (CL) with extinction coefficient o.

Before translating these words into equations and "turning the crank," it is

worthwhile to observe how it is that the continuous variable CL can be transformed into an

almost dichotomous target acquisition probability. There are two links in the foregoing

chain of relationships that can cause this to happen. First, Beer's Law contains the CL in

the exponential, thereby amplifying the effect of small changes in that variable. Second,

the TTPF is a threshold function-a "soft" one to be sure, but when combined with the

amplification from Beer's Law the effect can be essentially on-off. Presently we will

derive the conditions under which this is so.

Summarizing these statements symbolically, we have

P. = TPF(s MRT-I(AT e-a CL)/N 50) , (II-1)

where MRT- 1 is the functional inverse of the MRT. The ITPF is given in the Model to be

TTPF~x) X2.7+0.7x

"ITrPF(x) - 1+X2.7+0.7x (II-2)

In order to get an analytic result, we invoke a widely used exponential approximation to the 0

MRT function 3,4 so that it can be inverted explicitly:

MRT(v) = MRT0 exp(P.sysv) =* MRT-I(AT) = •ysI.rL--] , (I1-3)

where typical values of the constants MRT0 and '3sys are 4 x 10-3 °C and 6 x 10-4

radians, respectively. Note that in this approximation the target contrast must exceed

MRT0 in order to be detectable.

3 R.E. Roberts, "A Simplified Approach to Analyses of Infrared Sensor Performance versus Weather
Theory and Application to the Hanford Data Base (U)," IDA Paper P-1284, October 1977
(CONFIDENTIAL).

4 R.E. Roberts and L.M. Biberman, "Impact of Atmospheric Propagation on Present and Future-
Generation Infrared Imaging Systems: A Reappraisal of 3-5 pim FUR Performance (U)," IDA Paper
P-1284, October 1977 (CONFIDENTIAL).
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Given these relations we can 14- .

compute the acquisition probability as a ' i
function of CL for any sensor and scenario 0.8 - ..........-.......... ......................

conditions we choose. One set of examples
is shown in Figure II-1. We have chosen 0.6 .. ........... ...... ........

P
the sensor parameters to be as given above....... -.

* for all cases. The scenario dependent 04--

parameters for the Base Case are AT = 10, Base"ase...
p0.2a-l--t-- Excursion 1I

d = 2 milliradians, and N50 = 3.5 cycles. ....... Excursion 22.......... Excursion 3 ..... ' . ......

Each Excursion differs from the Base Ca.i, 0 .- Eui 3
* in one parameter, respectively: (1) AT = 0 1 2 3 4 5 6

0.50, (2) d = 1 milliradians, and (3) N50 = CL g/mI2 ]

1 cycle. Our intuitive expectation is Figure il-I. The value of P. goes from

confirmed for these cases. We observe the high to low values over a narrow range

* transition from low to high acquisition of CL. The Base Case and the various
excursions are described In the text.

probability occurring over a narrow range

of concentration length.

In order to elucidate the specific conditions where this situation will occur, some

approximations are needed. We estimate the range of CL over which P.. varies

appreciably to be the inverse of the derivative of P.. evaluated at the PC. = 50% point.

(Note that this implies that, in the absence of obscurant, the target can be acquired with at

least 50% probability.) Taking the derivative of Equation II-I and using II-2 and 11-3

yields

ACL = Edl.. =I _FsysN5 (11-4)LdCL 150%11 as

The factor 1.18 arises in the derivative of the TTrPF. This relation is less simple than it

looks. This is because it is not really independent of CL, since we have constrained CL to

its 50% value. It is also desirable to remove the "engineering" parameters from the right

hand side to the extent feasible. After some straightforward algebra we obtain from

Equation 11-4 the condition

ACL Ln(AT50/MRT0 ) (11-5)
01.18 n(AT/AT50)

where CL50 is the CL at which the AT target is 50% detectable, and AT 50 is the target

contrast at which it would be 50% detectable in the absence of obscurants; both definitions

11-3



can be resolved using Equations 1-I to 11-3. Now, the target size, sensor resolution, cycle

criterion and smoke extinction coefficient all have been absorbed into these two new

parameters. Thus our mild approximation

has gained us some generality.

N o te th a t, b y h y p o th e s is , A T > l .T. . 1.. . r. . 0 .5

AT 50 > MRT0 , so both of the logarithms -.8- -........ ...... ...-.-. ........... ........

are positive. The ratio of logarithms is0
smaller than one subject to the condition 0.6- . ......... .................... 0.3p

(AT5 0)2 A T > M T 0 ' !] -6 10 " - ....... ....... .. .. • , • :•...........'•:. ......... ......... 0. 2
AT > M o(1-6).004- 0.A

which is the regime in which our two-level 0.2 ......... ............ ....... 0.1

approximation is valid; note however that ..

due to the logarithmic figure of merit the " 0

two-level hypothesis degrades gracefully. CL [m 2]

Given that this condition holds, one Figure 11-2. Illustration of computation
needs to be able to extract the necessary of model parameters from plume CL

model parameters from the smoke data. probability density function (PDF)and the P.. function.
These are the value of P. for the a

unobscured condition, Phi, and the fraction
of time that is spent in the unobscured condition, 71.

Our approach to determining il is illustrated in Figure 11-2. We assume a known

approximate distribution function, f(CL), which describes the frequency of occurrence of a
given concentration length of obscurant. At one level of approximation, we could estimate
71 by integrating the CL distribution up to the point of inflection of the P.. curve. To

account for the fact that our "knife" is a somewhat dull one, we improve our precision by
computing the integral 0

= ..0 J.(CIL) f(CL) dCL Of (17)

The factor in front of the integral corrects for the fact that P.. may not saturate at unity as

CL goes to zero. Similarly the appropriate estimate for Ph, is given by

Phi= 1 J(p.(CL))2 f(CL) dCL (II-8)I]PC(O)

11-4



A corresponding Plow may be computed (for comparison to zero) by replacing one power

of Po,(CL) in Equation 11-8 by the complementary quantity [P.(O) - P.(CL)]

B. THE CHARACTERISTIC TIME SCALE

A validated theoretical foundation for the determination of a characteristic time scale
* for the holes and gaps in smoke plumes has recently become available. Hoock and

Sutherlands have applied the standard results of Kolmogorov's turbulence theory to the
optical transmission problem. They begin by computing the spatial structure function of
the CL through a smoke plume. The spatial correlations are then linked to time by invoking

* a "frozen plume" approximation. This amounts to simply dividing the spatial scale by the
transverse component of the ambient wind velocity.

The spatial structure function - ..... .- ..... w ..... 4 ...... .
presented in Hoock and Sutherland is 10-C .......... ...........

* shown as a solid line in Figure I-3. The U S- .-...... i............. . ...... ......
horizontal axis is length expressed in units m 1........................................
of the plume thickness, e. It is interesting .1 ................1

that the function exhibits a transition for .

* lengths equal to the thickness of the plume.
For shorter lengths, the logarithmic slope 0.001

approaches 5/3; for larger lengths it

approaches 2/3. 10-5........................

This curve actually represents a 0.001 0.1 10 1000

special case; namely that the "outer length Transverse Distance Plume Thickness

scale," L0, approaches infinity. This Lo is Figure 11-3. The smoke plume spatial
the quantity that usually arises in turbulence structure function for various

problems. Roughly speaking, it represents values of L.

the length scale at which energy is injected into the system. Its value typically is below or
around 100 meters. To accommodate finite Lo, we need to go back to the defining equation

(Eq. 6.89 on p. 420 of Ref. 4) and numerically reevaluate. The results for particular values
0 of Lo are shown as dashed and dotted curves in the figure. The net effect is that the curve

5 Donald W. Hoock and Robert A. Sutherland, "Obscuration Countermeasures," in The Infrared and
Electro-Optical Handbook, Vol. 7, Countermeasure Systems (David Pollock, edL) 1993.
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is unchanged for small values of separation, but saturates quickly as the separation

approaches the outer length scale.

As we shall see later, the temporal

correlations in our model are assumed to be
exponential. So the parameter we require is 0 .8 - ........... ......... ............. .............. ...... .....
the time at which the structure function
reaches (1-l/e) = 0.63 of its maximum 0.6 ...........
value. Our time scale is therefore of the c"

T=cc (11-9) 0. -

where c is a dimensionless number of order .. -- ...... J ... 1 . .... L.. .
unity that varies slowly with LoH. See 0.001 0.1 10 1000
Figure 11-4. Given that the uncertainties in L

determining 1.0 and Vc will certainly exceed Figure 11-4. The L dependence ot the

10%, there is no penalty in assigning c a "constant" factor c.
constant value of 0.55.

1

11-6



1II. STATISTICAL MECHANICAL METHOD

Motivated by the discussion in Section R, the probability of an observer who will

eventually acquire the target of not seeing a target by a time t is assumed to be governed by

a differential equation of the form

dPf = -a 1(t) Pfail

dt

where cc is the usual target acquisition time constant and T1(t) is a random function of time

describing the ability to see through the obscuration. When the line of sight is completely

blocked 11 = 0; when the line of sight is clear, Ti = 1. Intermediate values model partial

* seeing; this paper deals primarily with the simpler binary case of complete visibility versus

complete blockage; generalizations to partial seeing will be indicated where appropriate.

Eq. (Ill-1) embodies the assumption that the important process in target acquisition is the

total time available with a clear line of sight. This is consistent with the modeling of the

* acquisition process as a series of short glimpses at different parts of the field of view.6

The solution to Eq. (111-1) is immediate.

- a i ¶1(x) dx

Pfail (t) = < e 0 (II>-2)

where the brackets (<>) denote an average over the random obscuration 71(t). In the

unobscured limit for which I(0) = 1 for all values oft, PHil (t) = -xp(- at) and therefore the

probability of successful target acquisition for this observer is Psucceed(t) = 1 - exp(- ta).

This expectation value of an exponential has a strong connection to statistical

models of ferromagnetism. To develop this analogy, a "spin" variable s(t) is defined by

i(t) = [1 + s(t)]/2 so that s(t) = +1 and -1 correspond to 71(t) = 1, and 0, respectively.

0 1Thus, the expectation value in Eq. (11-2) is rewritten as

6 An alternative hypothesis would be to require a fixed amount of continuous uninterrupted observation.
This will be addressed in Section V.
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-a i i(x) dx -(c12)Jg~x)dx

<e 0 >= e- at 2 <e o > (I1I-3)

It is the average over the spin variable that will be calculated explicitly. In order to apply

the standard magnetic models, it is convenient to break up the integral over time into a sum.

Divide the interval from 0 to t into N segments of duration A, t = NA; and rewrite the

integral as a sum.
t Nsx)dx =-A s, m4
0

The large N (equivalently, small A) limit will be taken at the end of the calculation.

The problem has now been recast into the form of a one-dimensional chain of spins

taking on the values of± I (referred to as "spin up" and "spin down" states); such a model

is termed an Ising model. Denoted by P({s)) the probability that the set of N+1 spins (s)

takes on a particular arrangement of up and down spins, the average over spins required for
Eq. (111-3) can be written as:

< e>= P((sl) e 0(111-5)
(s)

This can be placed into more usual thermodynamic form by representing P(( s}) in terms of

a Hamiltonian or energy function7

N
-P(ss)) +H h S 

(iP({s)) *- e.eII6

where the term linear in the sum of the spin values has been separated from the remainder

of the Hamiltonian, H({s)). The coefficient of the linear term, h, represents the magnetic
field of the spin system and serves to control the average value of the spin. Thus a large

positive h will induce the spins to point up; translating back to the obscurant model, a large

positive h increases the chance of a clear line of sight.

7 To be precise, in a true thermodynamics system this dimensionless Hamiltonian would correspond to
the usual Hamiltonian divided by kT where k is Boltzmann's constant and T the absolute temperature. 0
The same is amu of the dimensionless Gibbs free energy given in Eq. (Mf-8).
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Inserting this expression for P((s)} into Eq. (111-5), the first result of this section is

obtained.
*N N

- H((s)) + h. si -(cLf)7 S,
-(aA/2) Si e

-H((s{) +hA I i

Note that the numerator and denominator of this fraction is of the same form and differ only
in the effective value of the "magnetic field," h. In fact, the denominator is just the partition
function for this system, Z(h), and the numerator is the same partition function with a
modified argument, Z(h - cxA/2). Using the fact that the Gibbs free energy, G, of a system

is related to the partition function by Z = exp(- G), Eq. (111-7) can be rewritten as

""(e 2 4) > Si Z(h -aA/2) Ge(h) -G(h-al) -I1-8)
< e > Z•h)e

The original problem of the expected value of the probability of not seeing a target in the
presence of obscurants is thus shown to be equivalent to finding the Gibbs free energy of a
related Ising magnetic system. This "smoke scholium" allows the application of a wide
range of one-dimension studies of Ising systems that have been solved for a number of
different Hamiltonians. Each choice of Hamiltonian corresponds to a different distribution
of smoke properties; a specific choice will have to be made to produce a complete
description of the acquisition problem.

Some results can be obtained directly from the thermodynamic formalism and can
be used to check the results of any detailed calculation.

(1) For ot << 1, G(h)-G(h-oA/2) = otA/2N<s>. This is equivalent to:

- a J Y1(x)dx
< e 0 > - e-xQ<7>t (11I-9a)

That is, for small a, the time constant is reduced by the average probability of obscuration.

(2) For t << Tc, where Tc is the smoke correlation time.
t

- a J' r(x)dx

<e > M P+ e-O + P- , (HI-9b)

11-3
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where p+ and p- are the probabilities that the initial state of the system was initially

(at t = 0) in the spin up (clear vision) state and spin down (obscured vision) state,

respectively.

(3) For t or N very large, the Gibbs free energy should be "intensive"; that is, G

should be proportional to N. In that case,
t

-a f TI(x)dx
0 .af -9c)<e 0 > - Ce

where C and ceff are constants.

In Section IV, a particular form of the Hamiltonian will be chosen that allows for a

simple calculation of the complete result.
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IV. SMOKE MODEL RESULTS

The complete solution to Eq. (11-2) can be obtained easily if a simple form of the

Hamiltonian is chosen. The one chosen is the simplest Hamiltonian to solve and also

corresponds (as will be shown) to the assumption of the Kowalczyk-Rotman Monte Carlo

approach. The nearest-neighbor Ising model contains interactions only between adjacent

spins:
H = -E I [si Si -11 (IV-I)

i=j±1

where E is an "interaction energy" and serves to control the coupling or correlation between

0 spins. A large value of this interaction will produce a strong correlation between spins

corresponding to longer obscurant correlation times. In this section the partition function

ratio for the Ising model Hamiltonian will first be calculated using conventional statistical

mechanical techniques. Subsection A will review the solution methods for the usual Ising

model; subsection B will derive the results for the partition function ratio which describes

the probability of not seeing, Eq. (III-8). The result shows that the choice of the Ising

Hamiltonian is equivalent to assuming exponential distributions of both the clear and block
intervals. This being the case, a Markov random field approach is appropriate. The

rederivation of the results using the Markov approach will be given in subsection C.

A. ISING MODEL SOLUTION

The Ising model Hamiltonian, Eq. (IV-1), is solved conventionally by introducing

* the transfer matrix, Tij = exp (-Hij) where i and j indicate the states (+1 or-i) of adjacent

spins. Including the magnetic field contribution, T is given by

T eh e-h (IV-2)

Now imagine M Ising spins arranged not in a straight chain but in a circle so that the last

spin and first spin are identical (sl = sM). Then the partition function which is the sum

over all states can be represented by

Z = trace TM (W1-3)
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The matrix product takes care of the sum over the states of the spins and the trace is the

representation of the periodic boundary condition imposed.8 The trace can be evaluated by

recognizing that T can be diagonalized with some orthogonal matrix, T = ODO-&, where 0

D =(IV-4)
0 X._

is the matrix of eigenvalues of T (X+ > X): 0

X±= cosh(h) ± sinh2(h) + e"4 (IV-5a)

and
I cosO sine

O = -sine cosO (IV-5b)

where 0 is the rotation angle of the orthogonal matrix. Then the partition function is

- a.M asM-+oo (IV-6)

A number of quantities can be calculated in addition to the partition function. The
average value of the spin <s> is given by

<s> = cos2 0 - sin2 0 = sinh(h)
T/sinh2h + e4E- r-)

The probabilities of a particular site being spin up (clear line of sight) or spin down
(blocked line of sight) were denoted as p+ and p- in Sec. Il and are given by p+ = cos20

and p- = sin20, respectively. Finally, the spin-spin correlation function is given by
Sýs> =<s>2 + (1- <s>2)( ) -j (IV-g)

1 The matrix TM itself is a matrix of partition functions for fixed boundary conditions of the open chain
of M+1 spins, the ++ element of which corresponds to the partition function with so and SM both up, 0
etc.
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This completes the solution of the usual Ising model for the infinite chain,9 but is not

sufficient to evaluate the ratio of partition functions in Eq. (111-8) that require consideration

of finite chain effects. For future use, the appropriate limits of the infinite chain Ising

quantities for the small A limit are needed. Consider a scaled magnetic field h = h A, and

near-neighbor interaction parameter, exp (-2c) = e A. Then

± -=1 AP/2

- 2h (IV-9)

<s(o)s(')> = <s> 2 + (1 - <s>2) eA

These changes of scale were chosen to hold the average value of the spin, <s> (related to

the average probability of obscurant), and the correlation time of the obscurant (given by
1A )fixed in the limit A -O 0.

B. APPLICATION TO THE SMOKE SCHOLIUM

Instead of a circle of M spins with a single interaction between all the spin pairs,
imagine that M-N spins interact with the Ising Hamiltonian and magnetic field h with
transfer matrix T, while the remaining spins have a field h-oA/2 and transfer matrix, Ta.
Then the partition function for this case, denoted Z(a), is simply

Z(ct) = trace (TM-N TUN ) . (TV-10)

The desired ratio of partition functions in Eq. (111-8) is Z(a)IZ(O). Denoting by D and Do

the eigenvalue matrices for the two cases, and 0 and Oa the corresponding rotation

matrices, this is:

Z(a) = trace (DM'-NO-'1OaDa NOa-IO) (IV- 1I)

The product of the two rotation matrices is itself a rotation matrix with angle 80 = O- .

Taking the large M and large N limits (with NA = t fixed), the partition function can be

straightforwardly evaluated. Taking the ratio of Z(ct)/Z(0) and replacing the factor of

exp(--at), the final expression for Eq. (111-2) is

9 It is easy to show that the use of periodic boundary conditions is not essential in the solution.
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- a n(xdx

<e o >= e(-6A2 [cos2'8 + sin268e" -f] , (IV-12a)

where

a2 = (J3-a<s> )2 + a2 (1- <s>2)

13-a <s>
cos2S0 -3

2 (IV- 12b)

/3 -a <s>

sin 280 2 2

The result is a mixture of two exponentials whose time constants are functions of the target

acquisition time constant, a"l, the smoke correlation time V3-I, and the average probability

of clear line of sight, <'1>. <1'> is given by (I + <s>)/2. Figure IV-I shows a comparison

of the line of sight probabilities for a number of cases. The figure shows the unobscured

result (<s> = 1) and two variants of the obscured cases for <s> = 0 and <s> = - 0.5

(corresponding to <Tl> = 1, <Tl> = 0.5, and <TI> = 0.25, respectively) and a range of

values of 13a: 1/a = 0.5, 1.0, 2.0, and 5.0. Recall that <rl> is the average probability of a
clear line of sight while 3 measures the scale of the clouds and gaps (large 3 being

equivalent to short intervals of clouds and short gaps for fixed <11>).

Note that the curves for each value of <cl> are bunched together even though the
values of 13/a vary by a factor of 25. For a fixed value of <1e>, the probabilities are
bounded by the =0 and 13= limits:

Pcd(t, ,<Tl>) > Ps (t,0,<rI>) = <1n-n>(-a t)

PSWreed (t,, <el> ) •Pumw~e (t, , -<T3>)--I-e<m(I13

which agrees with Eqs. (Il-9a)-(IfI-9b) (identifying p+ = <-I> and p. = I -<11>). The

relationship between the exact result and the bounds1 0 is illustrated in Fig IV-2, which

reproduces the <71> = 0.5 cases shown in Fig. IV-I together with the bounds. 0

10 In fact, the P = 0 limit is a correct approximation to second order in t; P dependence only enters for t3  0

and higher tams.

IV-4



Search Timeilnes

0.8-

0.6-

= 00 0

0.0

0. 2 ie

Figure~~~~~~~ IV1.Serc pobbiitesasa untin0f t o

unbsurd n obcue 1ae.0:c=02

P/=0:.1> 02



Search Timeilnes

0.8

S0.6

0.4

Of < 1 =lZ . 0.5o

0.0 20 <q =O

0.0
2 Time 3 

5

Figure IV-2. Search Probabilities ma a function of a t for unobscuredand obscuredg caes. Comparison of exec, *Suhts tar -q, 0.5with aPPrOximm.e bound&.

IV-6



Finally, for t large, the last limit described in (111-9) can be recovered:

0 - af iI(x)dx

<e •0 > = cos2s e- (a -6 + P) t/ 2  (IV-14b)

so that cteff = (a - f + 0)/2.

SlThe final result, Eq. (IV-12), reproduces analytically the Monte Carlo results of

Kowalczyk-Rotman. The essential similarity connection is that Kowalczyk-Rotman

assume that the smoke obscurations and the spaces between them both have exponential

distributions. In this Ising approach, one requires the probability that if a spin at some

* time, say t = 0, is up, that all the spins are up for times between 0 and t. This can be

calculated using the transfer matrix approach by inserting into the trace of Eq. (IV-3) the
product of n projection operators (n A = t of the form

1 0
S+ 0 0

and then taking the limit of small A. Similarly, using the complementary projection

operator P_ = 1 - P÷, one obtains the probability of staying in a spin down state (line of
sight blocked). The resulting probabilities are exponentials:

P+t (t) e t (IV- 15a)

+ -3 (l-<s>)
2

(IV-15b)

.= [ l+<s>)
2

The two exponents 13± could be used to characterize the system instead of <rT> and I.

C. MARKOV RANDOM FIELD APPROACH

The Ising model Hamiltonian is therefore equivalent to a two exponent description

of the intervals of blocked and clear line of sight. There is an alternative derivation of the

result given in Eq. (IV-12) which exploits that relationship directly. This uses, instead of

the statistical mechanical analogy, the language of Markov processes.1 ' To apply the

11 This method was suggested to the authors by Dr. Amnon Daicher of IDA.
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Markov method, consider a three-state system: (1) the spin down state corresponding to
blocked sight; (2) the spin up state (clear line of sight); and (3) a "done" state,
corresponding to having acquired the target. A transition matrix between these states can
be written down immediately in terms of ca and 1P±. Normally, a three-state system would
require a 3 x 3 transition matrix for a complete description; however, in this case, the done
state has no transitions to either the up or down states and therefore a transfer matrix to
describe just the transition of the up and down states suffices. 12

-(÷+ a) 13+
T =- O. + . (IV-16)

Thus, the up state decays through two channels: (1) at a rate P3+ into the down channel and
(2) at a rate of a into the done channel. The down state can only transition into the up
channel and does so at a rate of Il The exponential of T gives the transition probabilities:

eTt = e"[e'÷t(T - e) - e•;(T -XL)] (IV-17)

where X• are the eigenvalues used in Eq. (IV- 12):
. (J3+ a) 13,

X±2 + 2 (IV-18)

This can be used to describe the probability of being in the up and down states for any
initial distribution of states. The probability of not seeing the target is just the probability of
being in either the up or down state (since otherwise the system is in the done state). For 0
any initial distribution of up and down states (v+, v_), with v+ + v- = 1, the probability of
not seeing is therefore13:

Pfeii(t) -e(-" v,+,)-- ,- v+,)] (1V-19)

For the a priori estimate of the distribution of states, v+ = p+ = (1 + <s>)/2, this reduces to
Eq. (IV-12). On the other hand, if one knows the state at t = 0 to be definitely clear or

blocked the appropriate choice of v+ is I or 0 respectively.

12 This means that the transition matrix given here does not "conserve probability." The lost probability
corresponds to populating the done state.

13 This result is more general than that given in Eq. (IV-12) using the statistical mechanical formulation;
however, the same general result can be obtained in the partition function approach by using fixed 0

rather than free boundary conditions.
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Generalizations of either the partition function approach or the Markov approach

could involve the introduction of intermediate states between clear and totally blocked lines

of sight. In addition, more complex interactions can be modeled in the Hamiltonian to

provide something other than simple exponential distributions of the clear and blocked

intervals. However, any of these generalizations involves the introduction of additional

parameters. The experimental data available at this time does not indicate the need for any

such extension.
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V. MODELING EXTENDED INTERVALS

A. APPLICATION OF THE ISING-MARKOV MODELS TO
TIME INTERVALS

In the preceding sections, the target acquisition task was modeled as a cumulative
process for which the total time available on target was the relevant quantity, independent
of how that time was accumulated. This is consonant with the assumption that target
acquisition is the consequence of a series of independent glimpses, each of which is of
short duration compared to any change in the visibility conditions. Thus, the task is
performed equally well when 10 seconds of clear viewing is provided whether it is
provided in a single interval of 10 second or in 10 intervals of 1 second each. Another

point of view would be to assume that a single continuous block of time is necessary to
perform a task. This would be the case, for example, for a command-guided missile, but
may also be relevant for other aspects of the target recognition process.

One can describe this problem using the Ising-Markov models of the obscurant
developed in Sections III and IV. The line of sight is alternately clear and blocked. It is
assumed that the task is completed when a clear line of sight is made available for a time
greater than or equal to the required time for the task, 'r. As before, it is easy to calculate

the probability of failing, that is, the probability as a function of time, t, that no such
interval of length r or greater exists.

Assume for the moment that at t = 0, the system is known to be in the spin up

(clear) state. Consider a series of flips from spin up to spin down and back again occurring
at intervals of to, ti, t2 ...... The total time elapsed, t, is the sum of these intervals.

Xti = t . (V-l)

-Pt t.

To each transition between states, one can associate a transition probability density of e

13-dtj where tj is the length of the interval and the upper sign is used for the transition from
an up state and the lower for a transition from a down state. Consider, for example a
sequence including M flips, starting initially in the up (+) state. Then the probability
density that the M flips representing intervals ( tk ) will occur in the total time t is given by

V-1
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(,_)Mmod 2 [M/2f -l] t -{d Z M-(M121 -t)

P(Mlt,+) ~ l1+e 't lI e dt211l (V-2)

where [M/2] is the integer part of MW2. The corresponding probability is given by

integrating over the allowed values of the sizes of the intervals. Suppose that probability

that no (+) state lasts longer than time t+ and that no minus (-) state lasts longer that %-.

Then the integrals may be performed if the delta function is replaced by its Fourier

transform:

"P(Mt,+,Tr do) R + R M -[M2 (V-3a)

where the factors R+ are given by:

R± e (+ - &- (V-3b)

Summing over all values of M, one has

P(t,+,%+ =r eif R+R.f2x 0+0- (1-R+R) [f+ + --- 4)

The corresponding formula for beginning in the down state is given by interchanging plus

and minus subscripts. (If the initial state is not known, then one can sum over the two
cases using the a priori estimates of being in the up and down states p+ = 13,
p= 13+/3, where, as before, 3 = P3+ + 3. )

In the case of interest, the amount of time in the down or (-) state is unimportant
(,_ = -o); writing r+ = T for simplicity, Eq. (V-4) then gives the probability that in a time t,

beginning in the (+) state, no interval of length r or longer exists (that is, the probability of 0

failure), as follows:

=J!e''(wo - i13)( 1 - •( +c~r )V5p(t,+ ,% d(O jlax (o-e(,+i
X )00-o T € l -(P + + ioWT . 0-5a)

For starting in the down (-) state:

P(t, - ,) = do) -imt O + e P +W

()- i ) -13+1- €+ (V-5b)
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The contour integrals in Eq. (V-5) run along and just below the real co axis.

Although these integrals provide the exact results needed, the complicated form of the

denominators in these integrals makes them difficult to evaluate. One approach is to

expand the denominators in powers of the exponential terms and integrate each term

separately. Note that a term proportional to the nth power of the exponential carries an co

dependence of e•m - n ; for t < nt, the contour can be closed down in the complex CO plane

and there is no contribution to the integral. For t > nit, the contour is closed up and the

contributions from the poles at (o = 0 and co = i13 can be easily calculated. 14 Straight-

forward, but extremely tedious, algebra gives:

(IV-6a)
_ -~T.. - I'

D (j , OT.) DI(j , OTj+ ) e "r1÷) + D2( P[T. ) e"'Ti D2(j , PT.+~
1 I 1J) D2(j.3T) - 2 'J+1

For starting in the down (-) state:

P(t, 2 (V-6b)
J 13

DI~j I3Tj)D2(j p~j) 13-"Til

D(j,1T.)+D - -(-[D (j ,3T.)- D (j,-P1T. )e J
I132 3 J+l 3 J+1

where Tj is a shifted time variable:

T. = t-jT ; t>jr

= 0 ; t<jl. (V-6c)

It is important to note that terms containing Tj contribute only if Tj > 0; that is, a term such

as Di (j, 13Tj) carries with it an implicit step function e(Tj). The functions Di are given by:

14 Note that these are not poles of the integrand before the expansion in powers of the exponential. A
little thought shows that these expansions do make sense. For example, one can expand the simple
integrand 1/(o - w0) in powers of w0, changing the simple pole at wo0 to a series of higher order
poles at W0 = 0.
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D1(j z) = k (2j-k-1)! - ('Z)k >

ko, )k! 0-k)!O 01)!(-),j0

(V-6d)

-1 , j=0.

D,(j, z ' (2j-k-l)! zk jI (V-6e)D2(j, z Y) =ok! j-k- ()! j!

I (2j-k). j.D3( jz) k= k k! 0j-k)! j! (z 'j>0(V-6f)

This result, although intricate in form, is relatively simple to describe. One can

describe the process of waiting for a clear interval as follows. Starting initially in the clear

(up or +) state, the probability that the line of sight stays clear for a time T is e . If the

line of sight did not stay clear for the whole interval, it must have flipped to the blocked

(down or-) state at some time before 'r. One then must wait for the blocked state to flip

and then begin the next clear interval. If the system flips before the time -, then another

cycle of waiting for the system to flip back to the (+) state and then counting down to -T

begins. This alternation between waiting for the system to move from the (-) to (+) states

and then testing the duration of the (+) state is responsible for the introduction of the step

functions.

Although the complete expressions given in Eq. (V-6) are daunting, the resulting

probabilities are not themselves complicated. Figure V-1 illustrates the probability of

success (having a clear line of sight for an interval greater than or equal to 'r) for fL.'c = 0.5
and 0+,c = 0.5. That is, the clear and obscured intervals both have an average value of 2r.

Two curves are shown; the higher curve, labeled P+, corresponds to the probability of

success starting from the + (unobscured) state; the lower is the corresponding probability

starting in the - (blocked) state. Both P+ and P- are identically zero for t fr < 1, since one

cannot have an interval of length - until at least that length of time has passed. P+ then

jumps discontinuously to a value of I - e-0+9, (- 0.61) corresponding to the probability

that the line of sight has stayed continuously clear. On the other hand, P- is continuous at

t / = 1 since at least one flip (from - to +) must happen and therefore the probability

increases smoothly from 0 at t/z = 1. Note that by tft = 4, the probability of an interval of

length at least 'r is greater than 0.8. For long times, the distinction between P+ and P-

becomes less important.
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Figure V-1. Probability of having a clear Interval of length >
as a function of t/t. (0-r = 0.5 and P+• = 0.5)

Figure V-2 shows the same curves for fL.. = 0.5 and j3+r = 1.0. For these values,

the average duration of a clear interval is T. There is a drop in the initial probability at t /r =

1 to 0.31 (in comparison to the previous case) and the rate of increase of probability is

slower. For 0.8 probability of success, one must have t ft> 9.

Figure V-3 shows the results for D-_ = 0.5 and P+tc = 2.0. In this case clear

intervals last only I/2 on average; in consequence, the probability of success is less than

80% for t/T < 25.

Aside from the first discontinuity in P+ at t/t =1, the curves are continuous. The

step functions which appear in Eq. V-6 only introduce discontinuities in the higher order

derivatives. Expanding the appropriate terms near the boundaries, one has:

DI(j,z)+D2 (j,z)e"z zj+1

(V-7)

D3 (j,z)-D3 (j,-z)e' ,'+' z<<l,j>O

so that only the 0+1) th derivatives exhibit the discontinuity.
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Figure V-2. Probability of having a clear Interval of length
as a function of tIT. (0- = 0.5 and 0+,c 1.0)
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Figure V-3. Probability of having a clear Interval of length z
as a function of VT. (p-.r z 0.5 and P+,r = 2.0)
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B. SINGLE POLE APPROXIMATION

Although the details of these results depend on the precise values of JL'r and 13+',
it is clear that the overall structure is simple, particularly for longer times. The structure of

the contour integral leads one to expect that, asymptotically, these probabilities will be

dominated by a simple exponential form. In fact, these functions are well represented by a

single pole approximation which looks for the smallest root of the denominators in
Eqs. (V-5). Writing co = i K, the transcendental equation that needs to be solved is

-0, - 10S(K: - 1) + +3- e - = 0 (V-8)

There are two real roots for ic, the remaining (infinitely many) roots are complex. One root
of this equation is always K = P3+; however, an examination of Eq. (V-5) shows that both

integrals have zero residue at that pole and do not contribute to the result. The other root

must be determined numerically and the residue at that pole gives the asymptotic behavior
desired. Denoting that root simply by iK, the single pole approximation is

C (K - 13)P+ = 1 (ic-13)(1+ 13+13- )e -.t

P+ =1I-0+-- e-c
2K - 13-tK (K- 13)

=10-)-(1 _.) (7-9)
P- = I - - 0+ -e-K't

21c- 13 -,r c (K- 13)

In the special case of 13+ - jL + 13+13- = 0, the two roots are degenerate and the correct

asymptotic form is given by
13_t -13+t

P+ = 1 - e
1 +03+30-,r /2

(V- 10)

- =1- 1+3 e-+t
I + 5+01- T /2

Table V-I gives the values of the transcendental root for a number of values of 13+t and

IV-7
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Table V-1. Values of the Dominant Pole

0.1 0.2 0.5 1 2 5

0.1 0.0901 0.0811 0.0596 0.0358 0.0131 0.007

0.2 0.1792 0.1608 0.1169 0.698 0.0255 0.0013

.5 0.4404 0.3899 0.2760 0.1615 0.0588 0.0031

1.0 0.8590 0.7355 0.5 0.2857 0.1037 0.0057

2.0 1.5499 1.2798 0.8209 0.4568 0.1669 0.0098

5.0 2.6634 2.0683 1.2586 0.6935 0.2606 0.0 "72

The single pole approximation is actually very good for even moderate values of

t / '. Table V-2 gives the errors for t / - = 0, 1, and 2 for the cases given in Figs. V- 1,

V-2, and V-3. The errors are large at t /'r = 0, moderate at t / r = 1 and negligible at

t / 't = 2. This indicates that the next (complex) root of Eq. (V-8) is usually large. An

estimate of the location of that root has not been determined analytically but numerical

searches show it to be typically 10 times greater than K. Numerical experiments have not

found any nontrivial cases (i.e., any case for which the probabilities are not essentially 0 or

1) for which the single pole approximation is not essentially perfect for t / PC > 2. 5

Table V-2. Comparison of Exact Result and Single Pole Approximation

Parameters t/' P+ Exact P+Approx P-Exact P-Approx

0+[ = 0.5 0 0 0.4145 0 -0.307

O_• = 0.5 1 0.6065 0.5557 0 0.0082

2 0.6623 0.6629 0.2475 0.2474

•+t =1 .0 0 0 0.2092 0 - 0.01681

= 0.5 1 0.3679 0.3272 0 0.0061

2 0.4270 0.4275 0.1544 0.1543

P+T = 2.0 0 0 0.0661 0 - 0.0583

P-,T = 0.5 1 0.1353 0.1195 0 0.0021

2 0.1696 0.1697 0.0591 0.0591
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Because the single pole approximation is so good, a practical use of the exact result

would be to employ the exact result for small t / t (less than 2 or 3) and then use the single
pole approximation. For convenience for such applications, the first few DkJ, z) are given

below:

D1 (O,z) = 1

D 1(1,z) = 1 - z

D (2,z) =- 1[6 - 4z + z2 ]
1 2

(V-Ila)

D 1(3,z) = *-[60- 36z+9z 2 -z 3 ]

D2 (0,z) = 0

D2 (1,z) = -1

D2 (2,z) = -(3+z)
(V-Ilb)

D.2 (3, z) =-1(20 +8z+z2)

D3 (O,z) = 1

D3 (1,z) = 2-z

D3 (2,z) = 1 (12-6z + z7)
2 (V-I Ic)

D3 (3,z) = 1(120 -60z + 12z2 -z3)
6

V-9



VI. SUMMARY

The effects of obscuration on target acquisition and search have been modeled

mathematically. In Section EIl, a statistical mechanical analog between the alternating states
of clear and blocked lines of sight on the one hand and the up and down states of a
ferromagnet was exploited to give a general relationship between the search timelines in the
presence of obscuration and the free energy of a magnet (Eq. 111-8). Applying this general
result to the simplest magnet model (the Ising model) provides an explicit solution
(Eq. IV-12). This choice leads to exponential distributions of the obscured and clear
intervals (with characteristic exponents of 0- and P+, respectively) and corresponds

precisely to the Monte Carlo model of obscurants used by Kowalczyk and Rotman; the

model parameters are determined by the average lengths of the obscured and clear intervals
[(P_)-I and (0+)-1] and the unobscured search time exponent, CE. The probability of

finding a target increases as:

Ps,,,(t) =1-e-(a-Pa+P)t/2[cos2 80 + sin2 8 -at] (VI-1)

where j3 =•_ + P.+ is the overall smoke correlation inverse time constant and

[•2 = (j3-a<s> )2 + a 2 (1- <s>2)
[•-a <s>

Sa+ >
cos250 =

2 (VI-2)

* I• as

sin 280 2 2

n.-- P÷
<S> --

(<s> is the "average spin" of the magnetic analog; the average visibility
<i1>= (I + <s>)/2.) This provides explicit expressions for the numerical results of

Kowalczyk and Rotman. It was also shown that this model could be equally well
represented as a 3-state Markov process.
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In Eq. (VI-l) the target acquisition task was modeled as a cumulative process for

which the total time available on target was the relevant quantity, independent of how that

time was accumulated or how many times the line of sight was interrupted by obscurants. 0
This is consonant with the assumption that target acquisition is the consequence of a series

of independent glimpses, each of which is of short duration compared to any change in the

visibility conditions. Thus, the task is performed equally well when 10 seconds of clear

viewing is provided whether it is provided in a single interval of 10 seconds or in 0
10 intervals of 1 second each. Another point of view would be to assume that a single

continuous block of time is necessary to perform a task. This would be the case, for

example, for a command-guided missile, but may also be relevant for other aspects of the

target recognition process. The Ising-Markov model that was used to model the cumulative 0
process can also be used to model the probabilities of having extended (continuous)

intervals of clear line of sight to the target.

The result is algebraically complex in detail [Eq. (V-6)] and is represented by an

infinite series of terms. However, numerically the results are relatively simple as illustrated

in the figures (cf. Figs. V- 1-V-3). Fortunately, a simple single term approximation to the

exact expression can be derived. The probability of obtaining an interval of length 'r is

given by
K: (K- 13).

(,C - 13 ) ( 1 + )K 
( V.

P+ = 1 - 0-0 --- e Act (VI-3a)

(K- 10) 01 ---- ) 9
e-K

P- = 1 - P+ -- rOc -) (VI-3b)

where P+ gives the probability when the t = 0 state is known to be clear and P- gives the

probability when the initial state is known to be obscured. 0

0
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The parameter Ic is determined by the root of the transcendental equationl5 :

• K (K- 3) + 0+ e = 0 (VI-4)

This single term approximation is valid for "large" t/ values; in practice, the error at tft = 2

is negligible.

0

0

15 There are two real roots for i; the remaining (infinitely many) roots are complex. One root of this
equation is always P+,; the root to be employed in Eq. (V-2) is the other real root. In the special case
of P+ - P + 1•-3- = 0, the real roots of Eq. (VI-3) are degenerate and a slightly different form is

* used:

P+ I1 - e
1 + P+P- /2

1 + f_'r -P+tP- 1 e+p_ /
I + p 'I T /2

VI-3
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